miR-125b promotes MLL-AF9-driven murine acute myeloid leukemia involving a VEGFA-mediated non-cell-intrinsic mechanism.
نویسندگان
چکیده
The hematopoietic stem cell-enriched miR-125 family microRNAs (miRNAs) are critical regulators of hematopoiesis. Overexpression of miR-125a or miR-125b is frequent in human acute myeloid leukemia (AML), and the overexpression of these miRNAs in mice leads to expansion of hematopoietic stem cells accompanied by perturbed hematopoiesis with mostly myeloproliferative phenotypes. However, whether and how miR-125 family miRNAs cooperate with known AML oncogenes in vivo, and how the resultant leukemia is dependent on miR-125 overexpression, are not well understood. We modeled the frequent co-occurrence of miR-125b overexpression and MLL translocations by examining functional cooperation between miR-125b and MLL-AF9 By generating a knock-in mouse model in which miR-125b overexpression is controlled by doxycycline induction, we demonstrated that miR-125b significantly enhances MLL-AF9-driven AML in vivo, and the resultant leukemia is partially dependent on continued overexpression of miR-125b Surprisingly, miR-125b promotes AML cell expansion and suppresses apoptosis involving a non-cell-intrinsic mechanism. MiR-125b expression enhances VEGFA expression and production from leukemia cells, in part by suppressing TET2 Recombinant VEGFA recapitulates the leukemia-promoting effects of miR-125b, whereas knockdown of VEGFA or inhibition of VEGF receptor 2 abolishes the effects of miR-125b In addition, significant correlation between miR-125b and VEGFA expression is observed in human AMLs. Our data reveal cooperative and dependent relationships between miR-125b and the MLL oncogene in AML leukemogenesis, and demonstrate a miR-125b-TET2-VEGFA pathway in mediating non-cell-intrinsic leukemia-promoting effects by an oncogenic miRNA.
منابع مشابه
The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis.
The MLL gene from human chromosome 11q23 is involved in >30 different chromosomal translocations resulting in a plethora of different MLL fusion proteins. Each of these tends to associate with a specific leukaemia type, for example, MLL-AF9 is found mainly in acute myeloid leukaemia. We have studied the role of the Mll-AF9 gene fusion made in mouse embryonic stem cells by an homologous recombin...
متن کاملRequirement for CDK6 in MLL-rearranged acute myeloid leukemia.
Chromosomal rearrangements involving the H3K4 methyltransferase mixed-lineage leukemia (MLL) trigger aberrant gene expression in hematopoietic progenitors and give rise to an aggressive subtype of acute myeloid leukemia (AML). Insights into MLL fusion-mediated leukemogenesis have not yet translated into better therapies because MLL is difficult to target directly, and the identity of the genes ...
متن کاملThe leukemogenic fusion gene MLL-AF9 alters microRNA expression pattern and inhibits monoblastic differentiation via miR-511 repression
BACKGROUND In this study we explored the role of microRNAs (miRNAs) as mediators of leukemogenic effects of the fusion gene MLL-AF9, which results from a frequent chromosomal translocation in infant and monoblastic acute myeloid leukemia (AML). METHODS We performed a specific and efficient knockdown of endogenous MLL-AF9 in the human monoblastic AML cell line THP1. RESULTS The knockdown ass...
متن کاملThe trithorax protein partner menin acts in tandem with EZH2 to suppress C/EBPα and differentiation in MLL-AF9 leukemia.
Trithorax and polycomb group proteins antagonistically regulate the transcription of many genes, and cancer can result from the disruption of this regulation. Deregulation of trithorax function occurs through chromosomal translocations involving the trithorax gene MLL, leading to the expression of MLL fusion proteins and acute leukemia. It is poorly understood how MLL fusion proteins block diff...
متن کاملMicroRNA-125b transforms myeloid cell lines by repressing multiple mRNA.
BACKGROUND We previously described a t(2;11)(p21;q23) chromosomal translocation found in patients with myelodysplasia or acute myeloid leukemia that leads to over-expression of the microRNA miR-125b, and we showed that transplantation of mice with murine stem/progenitor cells overexpressing miR-125b is able to induce leukemia. In this study, we investigated the mechanism of myeloid transformati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 129 11 شماره
صفحات -
تاریخ انتشار 2017